Article Data

  • Views 392
  • Dowloads 135

Original Research

Open Access


  • Hoyoun Kim1
  • Yong Hwan Kim2
  • Won Kim3

1Institute of Sport Science, Seoul National University, Seoul, Republic of Korea

2Department of Physical Education, Gangneung-Wonju National University, Gangneung-si, Republic of Korea

3Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

DOI: 10.15586/jomh.v16i2.224 Vol.16,Issue 2,May 2020 pp.50-58

Published: 04 May 2020

*Corresponding Author(s): Yong Hwan Kim E-mail:
*Corresponding Author(s): Won Kim E-mail:

PDF (436.53 kB)


Background and objectives

Sarcopenia and metabolic syndrome (MetS) increase incidence with age. This study evaluated the prevalence of MetS in middle-age to elderly men according to knee and grip strength and muscle mass.


Data from 256 males aged 40–69 years were analyzed. The impedance method was used to assess appendicular skeletal muscle mass (ASM). Muscle strength was measured grip strength with a dyna-mometer and 60°/s knee strength with isokinetic machine. Strength and muscle mass were divided into quartiles, and logistic regression analyses were performed.


Absolute strength was not significantly prevalent in MetS, but MetS prevalence was significantly higher in participants with lower relative strength and muscle mass values (p<0.05). The group with the lowest relative ASM showed a 3.604-fold increase in MetS prevalence compared to highest ASM. Lowest relative knee extension strength group increased by 3.308 (95% CI 1.201–8.064) and relative knee flexion strength increased by 2.390 (95% CI 1.006–5.560) in MetS prevalence compared to the highest strength group. Lowest muscle mass and extension strength group increased by 6.8-fold com-pared to the highest muscle mass and strength group.


Relative values of strength and muscle mass divided by body weight were significantly associated with MetS. Therefore, having high muscle strength and muscle mass along with low body weight will prevent MetS.


metabolic syndrome; strength; muscle mass; prevalence

Cite and Share

Hoyoun Kim,Yong Hwan Kim,Won Kim. ASSOCIATION OF LOW MUSCLE MASS AND ISOKINETIC STRENGTH WITH METABOLIC SYNDROME. Journal of Men's Health. 2020. 16(2);50-58.


1. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on defi-nition and diagnosis. Age Ageing 2018;48:16–31.

2. Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle 2016;7:512–514. https://doi. org/10.1002/jcsm.12147

3. Evans WJ. What is sarcopenia? J Gerontol A Biol Sci Med Sci 1995;50:5–8.

4. Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J Endocrinol 2016;229:R67–R81.

15- 0533

5. Sanada K, Miyachi M, Tanimoto M, et al. A cross-sectional study of sarcopenia in Japanese men and women: Reference values and associa-tion with cardiovascular risk factors. Eur J Appl Physiol 2010;110:57–65.

6. Stephen W, Janssen I. Sarcopenic-obesity and car-diovascular disease risk in the elderly. J Nutr Health Aging 2009;13:460–466. https://doi. org/10.1007/s12603-009-0084-z

7. Atkins JL, Whincup PH, Morris RW, et al. Sarcopenic obesity and risk of cardiovascular dis-ease and mortality: A population-based cohort study of older men. J Am Geriatr Soc 2014;62: 253–260.

8. Grundy SM. Metabolic syndrome: Connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol 2006;47:1093–1100.

9. Kim YH, Cho KK, Kim YH. Association of fitness, body circumference, muscle mass, and exercise habits with metabolic syndrome. J Mens Health 2019;15:e46–e55. 10.22374/jomh.v15i3.152

 10. Kawamoto R, Ninomiya D, Kasai Y, et al. Handgrip strength is associated with metabolic syndrome among middle-aged and elderly com-munity-dwelling persons. Clin Exp Hypertens 2016;38:245–251. 63.2015.1081232

 11. Yang EJ, Lim S, Lim J-Y, et al. Association between muscle strength and metabolic syndrome in older Korean men and women: The Korean lon-gitudinal study on health and aging. Metabolism 2012;61:317–324. 2011.07.005

 12. Kannus P. Isokinetic evaluation of muscular per-formance. Int J Sports Med 1994;15:S11–S18.

 13. Royer M, Castelo-Branco C, Blümel J, et al. The US National Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III): Prevalence of the metabolic syndrome in post-menopausal Latin American women. Climacteric 2007;10:164–170. 30701258895

 14. Khang Y-H, Yun S-C. Trends in general and abdominal obesity among Korean adults: Findings from 1998, 2001, 2005, and 2007 Korea National Health and Nutrition Examination Surveys. J Korean Med Sci 2010;25:1582–1588.

 15. CSMi. Humac norm users guide. Stoughton, MA: Computer Sports Medicine, Inc.; 2019.

 16. Stenholm S, Harris TB, Rantanen T, et al. Sarcopenic obesity-definition, etiology and conse-quences. Curr Opin Clin Nutr Metabol Care 2008;11:693. e328312c37d

 17. Lee J, Hong Y-p, Shin HJ, et al. Associations of sar-copenia and sarcopenic obesity with metabolic syndrome considering both muscle mass and muscle strength. J Prev Med Public Health 2016;49(1):35–44. 15.055

 18. Atlantis E, Martin SA, Haren MT, et al. Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism 2009;58: 1013–1022. 2009.02.027

 19. Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J 2013;3:346.

 20. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composi-tion study. J Gerontol A: Biol Sci Med Sci 2006;61:1059–1064. 61.10.1059

 21. Hurley BF. Age, gender, and muscular strength. J Gerontol Biol Sci Med Sci 1995;50:41–44.

 22. Yi D, Khang AR, Lee HW, et al. Relative handgrip strength as a marker of metabolic syndrome: The Korea National Health and Nutrition Examination Survey (KNHANES) VI (2014–2015). Diabetes Metab Syndr ObesTargets Ther 2018;11:227.

 23. Ploutz-Snyder LL, Manini T, Ploutz-Snyder RJ, et al. Functionally relevant thresholds of quadri-ceps femoris strength. J Gerontol A Biol Sci Med Sci 2002;57:B144–B152.

 24. Hamner SR, Seth A, Delp SL. Muscle contribu-tions to propulsion and support during running.J Biomech 2010;43:2709–2716. 10.1016/j.jbiomech.2010.06.025

 25. Abe T, Sakamaki M, Yasuda T, et al. Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. J Sports Sci Med 2011;10:145. PMC3737910

 26. Trappe T, Lindquist D, Carrithers J. Muscle-specific atrophy of the quadriceps femoris with aging. J Appl Physiol 2001;90:2070–2074.

 27. Artero EG, Lee D-c, Lavie CJ, et al. Effects of muscular strength on cardiovascular risk factors and prognosis. J Cardiopulm Rehabil Prev 2012;32:351. e3182642688

 28. Srikanthan P, Karlamangla AS. Muscle mass index as a predictor of longevity in older adults. Am J Med 2014;127:547–553. https://doi. org/10.1016/j.amjmed.2014.02.007

 29. Larsson L, Degens H, Li M, et al. Sarcopenia: Aging-related loss of muscle mass and function. Physiol Rev 2018;99:427–511. 10.1152/physrev.00061.2017

 30. Hong JY, Oak JS. Effects of 12 weeks aerobic. Anaerobic combined exercise training on fitness, body composition, skeletal muscle index and blood lipid profiles in obese elderly women. Korean J Obes 2013;22:30–38.

 31. Evans WJ. Exercise training guidelines for the elderly. Med Sci Sports Exerc 1999;31:12–17.

Abstracted / indexed in

Science Citation Index Expanded Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,200 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Social Sciences Citation Index Social Sciences Citation Index contains over 3,400 journals across 58 social sciences disciplines, as well as selected items from 3,500 of the world’s leading scientific and technical journals. More than 9.37 million records and 122 million cited references date back from 1900 to present.

Current Contents - Social & Behavioral Sciences Current Contents - Social & Behavioral Sciences provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in the social and behavioral sciences.

Current Contents - Clinical Medicine Current Contents - Clinical Medicine provides easy access to complete tables of contents, abstracts, bibliographic information and all other significant items in recently published issues from over 1,000 leading journals in clinical medicine.

SCOPUS Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

DOAJ DOAJ is a community-curated online directory that indexes and provides access to high quality, open access, peer-reviewed journals.

CrossRef Crossref makes research outputs easy to find, cite, link, assess, and reuse. Crossref committed to open scholarly infrastructure and collaboration, this is now announcing a very deliberate path.

Portico Portico is a community-supported preservation archive that safeguards access to e-journals, e-books, and digital collections. Our unique, trusted process ensures that the content we preserve will remain accessible and usable for researchers, scholars, and students in the future.

Submission Turnaround Time