TAEKWONDO COACH–ATHLETE INTERACTION AND PERCEIVED PERFORMANCE: A COMPARISON BETWEEN TWO TAEKWONDO STYLES, GYEORUGI AND POOMSAE

By Seyong Jang, PhD¹ and Wi-Young So, PhD²

¹Senior Researcher, College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea.
²Associate Professor, Sports and Health Care Major, College of Humanities and Arts, Korea National University of Transportation, Chungju-si, Republic of Korea.

Corresponding Author: Wi-Young So, PhD: email: wowso@ut.ac.kr


Abstract

Background and Objective
This study aims to provide fundamental knowledge on approaches to enhance the performance of Taekwondo players by validating how the coach–athlete interaction affects perceived performance, and how its effect varies between gyeorugi (sparring) and poomsae.

Materials and Methods
A survey was conducted on 394 Taekwondo players from universities located in Seoul, Gyeonggi, Incheon, and Chungnam, all of which are official members of the Korea Taekwondo Association as of 2016. Participants were selected through purposive sampling, a type of non-probability sampling. Subsequently, 382 of 394 respondents, excluding 12 respondents who did not return the questionnaires, were selected for data collection (gyeorugi: n = 180 and poomsae: n = 202; 230 [60.2%] men and 152 [39.8%] women).

Results
Coach–athlete interaction had a statistically positive influence on perceived performance of University Taekwondo players (p < 0.05). Furthermore, coach–athlete interaction showed a greater impact on perceived performance in a group of gyeorugi players than in their poomsae counterparts (19.6% vs. 6.5%). The result of pairwise parameter comparison exceeded the critical value (±1.96: α = 0.05; ±2.58: α = 0.01), suggesting that the effect of coach–athlete interaction was statistically significant at a 99% confidence level.
Conclusion
These results indicated that in Taekwondo training, coach–athlete interactions including instruction on technique, faith, encouragement, and passing on know-how were more effective in enhancing the performance of gyeorugi players than poomsae players.

Keywords: Taekwondo, Gyeorugi, Poomsae, Coach–athlete interaction, Perceived performance

All coaches and players in the field put strenuous effort to achieve satisfactory outcomes. Organized training programs for coaches as well as repeated practice of players are essential for players to achieve their full potential, but a positive coach–athlete interaction is one of the most important factors. Despite excellent innate talent, a player would not achieve outstanding performance in big competitions such as the Olympics without adequate coaching. Thus, in training and competition, coach–athlete interaction and athletic performance are closely related.¹

Interaction during sports requires the concerted effort by coaches and players to fulfill a common goal with reciprocal effects on each other’s emotions, beliefs, and behaviours.²⁻⁴ A previous study suggested that coaches play a positive role in helping players to achieve their full potential,⁵ whereas greater distance between the 2 parties can lead to poorer athletic performance.⁶,⁷ Therefore, coach–athlete interaction requires scientific validation to offer fundamental knowledge on improving athletic performance.

Taekwondo is a global martial art, and gyeorugi has been selected as an official sport for 5 consecutive Olympics, thereby establishing it as a worldwide sport. In addition, The World Taekwondo Federation and The Asian Taekwondo Union have recently played a leading role in adding gyeorugi to official Olympic sports of the Universiade, world tournaments, and Asian Games, strengthening the status of gyeorugi as a global sport.

Unlike the past, when Korean athletes won many world championships, player’s performance has levelled off worldwide, facilitated by a range of disciplinary approaches on enhancing performance. However, current research on Taekwondo players is mostly based on sports physiology and sports mechanics, focusing on enhancing techniques and fitness level through training.⁸⁻¹³ Research on psychological variables such as coach–athlete interaction is lacking.

Therefore, research on validation of the impact of coach–athlete interaction on perceived performance is required. The 2 Taekwondo styles have distinguishing features, i.e., in gyeorugi, coaches can give players feedback on the spot about how to proceed, whereas in poomsae, players cannot receive feedback at the moment it is required. Therefore, the impact of coach–athlete interaction on perceived performance possibly varies between gyeorugi and poomsae. This study aimed to verify how the coach–athlete interaction affects the player’s perceived performance, in gyeorugi and poomsae, in order to provide fundamental knowledge on enhancing performance.

METHODS

Study Subjects
A survey was conducted on 394 Taekwondo players of universities located in Seoul, Gyeonggi, Incheon, and Chungnam, all of which are official members of the Korea Taekwondo Association (KTA) as of 2016. Participants were selected through purposive sampling, a type of non-probability sampling. Subsequently, 382 of 394 respondents, excluding 12 respondents who did not return the questionnaires, were selected for data collection (gyeorugi: n = 180 and poomsae: n = 202; 230 [60.2%] men and 152 [39.8%] women).

Research Procedure
Prior to conducting the study, researchers obtained approval from the University Research Ethics Committee and proceeded to contact University Taekwondo instructors over the phone, to explain the purpose and meaning of the research and obtain consent for data collection. A research and 2 assistant researchers then visited the designated place at the appointed time to collect data. In the training field, researchers explained the purpose and meaning of the research to Taekwondo players and obtained their signatures on the research agreement form. The survey was carried...
out by a self-administered method and the questionnaires were collected upon completion on the spot.

**SURVEY TOOL**

**Coach–Athlete Interaction**

Researchers conducted the survey using the questionnaire tailored to the context of Korea by Kim and Chung in 2011, which was developed based on the CART-Q developed by Jowett & Ntmoumanis in 2004. This questionnaire consists of 5 sub-factors including conversation, technique instruction, faith, encouragement, know-how, and 24 questions with 5-point Likert scale answers (1 = strongly disagree, 5 = strongly agree).

In confirmatory analysis, all goodness-of-fit (GOF) indices met the standard [GOF: $X^2 = 402.357$, degree of freedom (df) = 160, $p < 0.001$, Turker–Lewis index (TLI) = 0.923, root mean square error of approximation (RMSEA) = 0.063, root mean square residual (RMR) = 0.036]. Factor loading scores for each question ranged from 0.649 to 0.808. Construct reliability scores for sub-factors (conversation = 0.836, technique instruction = 0.848, faith = 0.845, encouragement = 0.883, know-how = 0.856) and average variance extracted (AVE) scores (conversation = 0.561, technique instruction = 0.548, faith = 0.636, encouragement = 0.654, and know-how = 0.600) were assessed as relatively fit. Cronbach’s alpha scores (conversation = 0.785, technique instruction = 0.811, faith = 0.838, know-how = 0.809) indicated that the items had relatively good consistency.

**Perceived Performance**

Perceived performance was analyzed using the questionnaire developed by Mamassis & Doganis. The questionnaire consists of a single factor, evaluated by 6 questions with a 5-point scale (1 = strongly disagree, 5 = strongly agree).

In confirmatory analysis, RMSEA score was rated as relatively poor but most of the indices were considered as good (GOF: $X^2 = 12.553$, df = 2, $p < 0.001$, TLI = 0.946, CFI = 0.982, RMSEA = 0.118, RMR = 0.031). Moreover, factor loading ranged from 0.620 to 0.888. Construct reliability scores for sub-factors (0.834), AVE score (0.561), and Cronbach’s score (0.824) were relatively fit. Q5 and Q6 were deleted since their factor loading was below 0.3.

**Validity and Reliability Analysis of Survey Tools**

SPSS and AMOS version 21.0 (IBM Corp., Armonk, NY, USA), and Window Excel version 2010 programs were employed to analyze collected data. In addition, frequency analysis, confirmatory factor analysis, Cronbach’s alpha, construct reliability analysis, AVE calculation, correlation analysis, structural equation modelling (SEM) analysis, measurement invariance validation, multi-group structural modeling, and pairwise parameter comparison analysis were performed.

**RESULTS**

**Results of Descriptive Statistics and Correlation Analysis for Sub-factors**

Table 1 shows the results of descriptive statistics and correlation analysis conducted prior to structural equation analysis. All sub-factors met the standard scores for mean, standard deviation, skewness, and kurtosis. In correlation analysis, r ranged from 0.220 to 0.712, suggesting a significant positive correlation among all factors.

**THE EFFECT OF COACH–ATHLETE INTERACTION ON PERCEIVED PERFORMANCE**

Structural equation model analysis was performed to validate the effect of coach–athlete interaction on perceived performance. As shown in Table 2, GOF for all factors was comparatively good [GOF: $X^2 = 68.575$ (df = 26), $p < 0.001$, Q($X^2$/df) = 2.638, CFI = 0.972, TLI = 0.962, RMSEA = 0.066, RMR = 0.034]. In addition, coach–athlete interactions perceived by Taekwondo players showed significant positive impact on the perceived performance ($\beta = 0.332$, $R^2 = 0.110$, $t = 5.461$, $p < 0.001$).

**COMPARISON BETWEEN TWO TAEKWONDO STYLES, GYEORUGI AND POOMSAE**

**Measurement Invariance**

Measurement invariance validation, for validating multi-group structural equation modelling, was
TABLE 1 Result of Descriptive Statistics and Correlation Analysis

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.300</td>
<td>0.655</td>
<td>−0.328</td>
<td>0.360</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3.530</td>
<td>0.685</td>
<td>−0.405</td>
<td>0.406</td>
<td>0.533**</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3.620</td>
<td>0.694</td>
<td>−0.118</td>
<td>−0.127</td>
<td>0.560**</td>
<td>0.634**</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>3.520</td>
<td>0.743</td>
<td>−0.097</td>
<td>0.259</td>
<td>0.510**</td>
<td>0.608**</td>
<td>0.712**</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>3.530</td>
<td>0.683</td>
<td>−0.094</td>
<td>0.001</td>
<td>0.497**</td>
<td>0.577**</td>
<td>0.586**</td>
<td>0.543**</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>2.930</td>
<td>0.781</td>
<td>−0.312</td>
<td>−0.534</td>
<td>0.279**</td>
<td>0.232**</td>
<td>0.220**</td>
<td>0.296**</td>
<td>0.276**</td>
<td>1.000</td>
</tr>
</tbody>
</table>

*p<0.01
a = conversation; b = technique instruction; c = faith; d = encouragement; e = know-how; f = performance.

TABLE 2 The Effect of Coach–Athlete Interaction on Perceived Performance

<table>
<thead>
<tr>
<th>Path</th>
<th>Path coefficient</th>
<th>R²</th>
<th>Standard error</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>→ Performance</td>
<td>0.332</td>
<td>0.110</td>
<td>0.093</td>
</tr>
</tbody>
</table>

Goodness-of-fit test: $X^2 = 68.575$ (df = 26), $p < 0.001$, $Q (X^2/df) = 2.638$, CFI = 0.972, TLI = 0.962, RMSEA = 0.066, RMR = 0.034

***p<0.001

performed before comparing the effect of coach–athlete interaction between gyeorugi and poomsae. Measurement invariance validation was performed as follows. First, configuration invariance was measured to validate whether the confirmatory factor model and path were identical across coach–athlete interactions for gyeorugi and poomsae, and perceived performance. Second, factor loading invariance was measured to validate whether factor coefficients were identical across the observed variables.

In configuration invariance validation, GOF indices for gyeorugi and poomsae were rated as relatively good in both coach–athlete interaction ($X^2 = 621.938$, df = 320, $p < 0.001$, TLI = 0.908, CFI = 0.923, RMSEA = 0.049) and perceived performance ($X^2 = 12.437$, df = 4, $p = 0.014$, TLI = 0.956, CFI = 0.985, RMSEA = 0.75). Factor loading scores for validating coach-athlete interaction for gyeorugi and poomsae were 0.543–0.802 and 0.622–0.859, respectively. Factor loading scores for validating perceived performance were 0.669–0.889 and 0.563–0.881, indicating that configuration invariance was identical between the 2 groups.

After validating configuration invariance, factor loading invariance was examined. Factor loading analysis was based on configuration invariance model as the baseline-model; subsequently, the constrained model was analyzed using validation, since the model was latent in baseline-model. The scores of unconstrained model (coach–athlete interaction: $X^2 = 621.938$, df = 320, TLI = 0.908, CFI = 0.923, RMSEA = 0.075) and scores of constrained model (coach–athlete interaction: $X^2 = 629.949$, df = -335, TLI = 0.982, CFI = 0.990, RMSEA = 0.048) showed...
no significant between group difference \( [\alpha = 0.5, df = 15, \text{critical value} = 25.00; df = 3, \text{critical value} = 5.99; \text{coach–athlete interaction: } = 8.011, p > 0.05; \text{perceived performance} = 0.579, p > 0.05\)].

**TABLE 3** The Result of Validation for Coach–Athlete Interaction to Perceived Performance

<table>
<thead>
<tr>
<th>Path</th>
<th>Gyeorugi</th>
<th>Poomsae</th>
<th>Pairwise parameter comparison*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction → Performance</td>
<td>0.442***</td>
<td>0.254**</td>
<td>2.774**</td>
</tr>
</tbody>
</table>

***p < 0.001, **p < 0.01

Comparison critical value ± 1.96 (\( \alpha = 0.05 \)), ± 2.58 (\( \alpha = 0.01 \))
it validated the effect of coach–athlete interaction on perceived athletic performance and analyzed the correlation of the 2 factors, in order to provide fundamental knowledge on enhancing performance. The limitations of the study were selection of players from Korea, the origin of Taekwondo, and not players from other countries; in addition, the study focused solely on coach–athlete interaction and perceived performance among a range of psychological factors.

Follow-up study with reinforced research on players of all ages and a range of variables is required. Importantly, subsequent comparative study on players with different levels of performance, on different features of Korean players and players from other countries would provide further knowledge for enhancing performance.

CONCLUSION

In conclusion, coach–athlete interaction had a positive impact on perceived performance. In addition, coach-athlete interaction had a greater impact on perceived performance of gyeorugi players than of poomsae players. These findings suggested that a positive coach–athlete interaction, including instruction on technique, faith, encouragement, and passing on know-how, enhanced perceived performance of Taekwondo players, with greater effect in gyeorugi players than in poomsae players.

REFERENCES